Recitation 6

October 1, 2015

Review

An $m \times n$ matrix A defines $A \colon \mathbb{R}^n \to \mathbb{R}^m$. The following are equivalent:

- A is **onto**;
- columns of A span \mathbb{R}^m ;
- system Ax = b has a solution (is consistent) for all b;
- every row of A has a pivotal position;

Once again, TFAE:

- A is one-to-one;
- Ax = Ay implies that x = y (i.e. A maps different vectors to different vectors);
- Ax = 0 has only the trivial solution (i.e. A doesn't kill any non-zero vectors);
- columns of A are linearly independent;
- every column of A is pivotal.

Basis: vectors v_1, \ldots, v_n in a vector space V for a **basis** if and only if

- v_1, \ldots, v_n are independent;
- v_1, \ldots, v_n span the whole V.

Eigenvalue: a number λ is an **eigenvalue** of a matrix A if $Av = \lambda v$ for some **non-zero vector** v. **Eigenvector:** vector v as above is called an **eigenvector** corresponding to the eigenvalue λ .

Stochastic matrix: a matrix with non-negative entries, numbers in each column should add up to 1. Probability vector x is a vector with non-negative entries, numbers should add up to 1. **Equilibrium vector:** for a stochastic matrix P is a probability vector q s.t. Pq = q.

Problems

Problem 1. Let's consider the following hypothetical situation. Suppose one TA is grading his students prelim solutions. After reading a solution, he is either happy, or sad and frustrated. If the TA is happy now, then there is 90% chance he won't get frustrated after reading one more solution. If the TA is already sad, there is a 20% chance he will cheer up after one more solution (the chance is not too big because of a beer shortage in the area, mostly in the area of his office, which basically leaves the TA without any source of happiness).

- 1. What is the stochastic matrix for this situation?
- 2. If the TA is fine now, what is the probability he will lose it after reading two more solutions? three more solutions?
- 3. Suppose you know that there is a 30% chance the TA is sad now. What is the chance he will be happy after grading the next exam?
- 4. There are A LOT of students, so the grading takes eternity. Compute what percentage of time the TA will be spending frustrated *eventually*.

Problem 2. Suppose vectors $\{v_1, v_2, v_3\}$ in \mathbb{R}^5 are linearly independent. Prove that the vectors $\{v_1 + 3v_2 - v_3, -v_1 - 2v_2 + v_3, v_2 + 2v_3\}$ are also linearly independent.

Problem 3. Is $\lambda = 2$ an eigenvalue of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$?

Problem 4. Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Is $\lambda = 4$ and eigenvalue? $\lambda = -1$? $\lambda = 1$? $\lambda = 3$? For each number which turned out to be an eigenvalue, find an eigenvector corresponding to this eigenvalue.

Problem 5. For the matrix

$$A = \begin{bmatrix} 1 & 3 & -3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

find all eigenvalues and eigenvectors corresponding to them. Why are the eigenvector you found linearly independent?

Problem 6. Suppose you know that a matrix A has 0 as an eigenvalue. Can A be invertible?

Problem 7. Suppose A is an invertible $n \times n$ matrix, and you know its eigenvalues $\lambda_1 \dots, \lambda_n$. What are the eigenvalues of A^{-1} ? (Hint: use the definition of eigenvalue and the previous problem.)

Problem 8. Look at the definition of the equilibrium vector q for a stochastic matrix P. Does it have anything to do with eigenvectors and eigenvalues?

Problem 9. Mark each of the following statements as true or false:

- If $v_1 \cdot v_2$ are two linearly independent vectors, they mus correspond to distinct eigenvalues.
- The eigenvalues of a matrix are on its diagonal.
- The null space of a matrix A is spanned by some of eigenvectors.
- To find the eigenvalues of A you need to reduce A to the echelon form.

Problem 10. Without calculations, find an eigenvalue of the matrix of the following linear transformations, and describe the corresponding eigenspace.

- $T: \mathbb{R}^2 \to \mathbb{R}^2$ reflecting with respect to the line x = y.
- $T: \mathbb{R}^3 \to \mathbb{R}^3$ rotating around the *y*-axis by the angle $\pi/2$.

Find matrices of the above transformations and check your answers.

Problem 11. Matrix A is called nilpotent if $A^n = 0$ for some number n. Give an example of a 3×3 non-zero nilpotent matrix. What are the eigenvalues of any nilpotent matrix A?